Die einzelnen Einsparpotentiale sind Veröffentlichungen von Konferenzen (z.B. Forging Industry Energy Workshop), Initiativen und einzelnen Projektbeispielen sowie Studien entnommen

sowie Studien entnommen.					
Bereich	Einsparpotentiale	min [%]	max [%]	Q [%]	Quellen
	geschätztes durchschnittliches Energieeinsparpotential Betriebe	-	-	0,15	(1)
Prozess- wärme	Optimized Process Heating - Forging Industry Energy Workshop	0,10	0,30	0,20	(2)
	optimierte Wärmeversorgung - inititative Energie Effizienz			0,15	(10)
Elektro- motoren	Electric Motor Systems	0,05	0,10	0,08	(2)
	Systemoptimierung Elektromotoren und Antriebssysteme	0,20	0,30	0,25	(9)
	Einsatz hocheffizienter Motoren	-	-	0,03	(4)
	Einsatz drehzahlvariabler Antriebe	-	-	0,11	(4)
Pumpen	Pumping System	0,10	0,20	0,15	(2)
	Optimierung Gesamtsystem Pumpe	0,18	0,90	0,54	(8)
	Systenverbesserung bei Pumpensystemen	-	-	0,30	(4)
Druckluft	Optimized Compressed Air System	0,10	0,20	0,15	(2)
	bedarfsgerechtes Druckangebot	0,05	0,10	0,08	(3)
	Projekt Energieoptimierung Druckluftnutzung	-	-	0,20	(6)
	Optimierung des Druckluftsystems	-	-	0,49	(5)
	Druckluftsysteme	0,05	0,50	0,28	(7)
	Systemverbesserung der Druckluftsysteme	-	-	0,33	(4)
Sonstiges	Elektronische Vorschaltgeräte (EVG)	-	-	0,05	(3)
	Systemverbesserung bei Kältesystemen	-	-	0,18	(4)
	Systemverbesserung bei raumlufttechnischen Anlagen und Ventilatoren	-	-	0,25	(4)
Queller					

Quellen:

- Schröter, M. (2011): Bewertung der wirtschaftlichen Potenziale von ressourceneffizienten Anlagen & Maschinen, Hrsg. Fraunhofer-Institut für System- und Innovationsforschung, März 2011
- (2) Thekdi A. C. (2010): Energy Efficiency Improvement Opportunities in Process Heating for the Forging Industry, Forging Industry Energy Workshop, USA Ohio 2010, unter: https://www.forging.org/system/files/field_document/Arvind_Thekdi.pdf, (abgerufen am 15.12.2012)
 (3) Marx, G. (2012): Energieeinsparpotentiale im Handwerk durch rationelle Energienutzung, Hrsg. Energieagentur NRW, unter: http://www.ifh.wiwi.uni-goettingen.de/prasentation/Prasentation Marx
- (Energieeinsparpotenziale).pdf, (abgerufen am 13.012.2012)

 (4) Hensler, G., Hochhuber, J., Linckh, V. (2009): Leitfaden für effiziente Energienutzung in Industrie und Gewerbe, Hrsg. Bayrisches Landesamt für Umwelt
 - (5) Deutsche Energie-Agentur GmbH (2007): Steigerung der Energieeffizienz durch konsequente Optimierung des Druckluftsystems 2. Preis Energy Efficiency Award 2007, in Preisträgerbroschüre
 (6) Deutsche Energie-Agentur GmbH (2001): Kampagne »Effiziente Stromnutzung in Industrie &
 - Gewerbe«, Projekt Leckagereduzierung im Druckluftsystem, Initiative EnergieEffizienz (dena), unter: http://www.stromeffizienz.de/industrie-gewerbe/dena-referenzprojekte.html?tx_sbproref_ pi1%5BshowUid%5D=25&tx_sbproref_pi1%5Bview%5D=pdf (abgerufgen am 09.12.2012) (7) Deutsche Energie-Agentur GmbH (2012: Druckluftsysteme in Industrie und Gewerbe. Ein Ratgeber
 - zur systematischen energetischen Modernisierung, Initiative EnergieEffizienz (dena)

 (8) Deutsche Energie-Agentur GmbH (2010): Ratgeber: Pumpen und Pumpensysteme für Industrie und Gewerbe, Initiative EnergieEffizienz (dena)

 (9) Deutsche Energie-Agentur, GmbH (2012a): Energieeffizienz-Anforderungen an Elektromotoren Ini-
 - (9) Deutsche Energie-Agentur GmbH (2012a): Energieeffizienz-Anforderungen an Elektromotoren, Initiative Energieeffizienz (dena), unter: http://www.stromeffizienz.de/industrie-gewerbe/effiziente-technologien/motoren-und-antriebssysteme.html (abgerufen am 09.12. 2012)
 - rechnologien/motoren-und-antrieossysteme.nimi ladgeruten am 09.12. 2012) (10) Deutsche Energie-Agentur GmbH (2011): Energetische Modernisierung industrieller Wärmeversorgungssysteme, Initiative EnergieEffizienz (dena)